4 Hypothesis Testing

4.1 Pure Significance Tests
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Discovery of the top quark (Abe et al., 1995, PRL)

Here are two extracts from the article announcing the discovery:

TABLE I.  Number of lepton + jet events in the 67 pb~' data
sample along with the numbers of SVX tags observed and the
estimated background. Based on the excess number of tags in
events with =3 jets, we expect an additional 0.5 and 5 tags
from 17 decay in the 1- and 2-jet bins, respectively.

Observed Observed Background

Nia events SVX tags tags expected
1 6578 40 50 + 12
2 1026 34 21.2 £ 65
3 164 17 52+ 1.7
=4 39 10 1.5 £ 04

The numbers of SVX tags in the l-jet and 2-jet
samples are consistent with the expected background plus
a small 7 contribution (Table I and Fig. 1). However,
for the W+ =3-jet signal region, 27 tags are observed
compared to a predicted background of 6.7 * 2.1 tags
[8]. The probability of the background fluctuating to
=27 is calculated to be 2 X 107° (see Table II) using
the procedure outlined in Ref. [1] (see [9]). The 27
tagged jets are in 21 events; the six events with two
tagged jets can be compared with four expected for
the top + background hypothesis and =1 for background
alone. Figure 1 also shows the decay lifetime distribution
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Performing a test

[0 There's a null hypothesis to be tested:
Hy: the top quark does not exist.

opposite — ‘proof by (stochastic) contradiction’.

O We obtain data, yons = 27 events on the 3-jet, 4-jet, ... channels.
O We compare yons With its distribution Py supposing that Hy is true.
O Here Py is Poiss(Ag = 6.7) and represents the baseline noise under H.
O We compute the P-value
Y
Pobs = Po(Y > yobs) = D y—?e‘“ =3x1077,
Y=Yobs

so
— either Hy is true but a (very) rare event has occurred,

— or Hy is false and the top quark exists.

decided that Hj could not (yet) be rejected, and not published their work.

This seems counter-intuitive, but as one cannot prove a hypothesis, we attempt to refute its

(0 Abe et al. announced a discovery, but if they had found pops = 0.001, maybe they would have
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Industrial fraud?

DETAIL WEIGHT NOTE

ez l=lalsleln]esmlw =

T3 208 |02V 303 |Res [Beo st | | 10 [T
oo Qo (3as DRy (268 |24 |05 (26 ;,.Jéﬂ

3 2 13 0T pal 350 [Rpp 1308 [ne 30

41361261 o) Ro2 a2 |rqq 2ol 1o | [ a0

5 2891800 3o Yllew {700 (285 |03 [s4) L3550 P11

s psilierRog 6] 120 | Vleo

7 611302 |20 L2o |04 [26 €08 70 it

4 0q 1294|209 [8e 1 [R02 I3 Ee3 80 Ll

K 1264 125G [301 20340k |2 2% I Y |

10130 RoL [7on 17 " 316 1ol

TOTAL CYAr. Jis3 B | 2[24 113}

ceouénons” 7 eRos{Tm{ / ‘ ‘“f/ R

O n = 92 weighings of sacks on the ‘delivery’ (or not?) of a commodity:

261 289 291 265 281 291 285 283 280 261 263 281 291 289 280
292 291 282 280 281 291 282 280 286 291 283 282 291 293 291
300 302 285 281 289 281 282 261 282 291 291 282 280 261 283
291 281 246 249 252 253 241 281 282 280 261 265 281 283 280
242 260 281 261 281 282 280 241 249 251 281 273 281 261 281
282 260 281 282 241 245 253 260 261 281 280 261 265 281 241
260 241

OO Their last digits are

0 1 2 3 4 5 6 7 8 9
14 4214 9 0 6 2 0 0 5

O How can we tell if fraud has taken place?
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Pearson’s statistic

Definition 58 If Oy,...,Ok are the numbers of observations from a random sample of size n falling
in categories 1,...,K, where E(Oy) = E, >0 fork=1,...,K and Zszl E}, = n, then Pearson’s
statistic (aka the ‘x statistic’) is

T i (Or — Ek
k=1

] (Ol, R ,OK) ~ Mult{n, (p1 = El/n,. ., PK = EK/TL)},

then T' ~ X% _, (approximation OK if average Ey > 5), giving a test of whether data Oy,..., Ok
agree with specified probabilities pq, ..., pk.
O Here Benford's law suggests all p;, = 1/10, so take E = 92/10 = 9.2.

0 For the original dataset we found t,,s = 158.2 and hence
Pobs = PO(T > tobs) = P(XS > 1582) = 0,

which is essentially impossible for uniformly distributed digits.

O Massive evidence for non-uniformity (and for industrial fraud?)
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Elements of a test

O A null hypothesis Hy to be tested.

0 A test statistic T', large values of which will suggest that Hy is false, and with observed value tg}s.

O A P-value

Pobs = PO(T > ZL/obs)v
where the null distribution Py(-) denotes a probability computed under Hy.
O The smaller pyys is, the more we doubt that Hy is true.
O pobs is a realisation of a P-variable P, which is U(0, 1) under Hy (if 7' is continuous), so
PO(P < pobs) = DPobs-;
T is chosen so that P is more likely to be small if Hy is false.

O If | decide that Hy is false, when in fact it is true, then | make an error whose probability under Hy
is exactly pops — so my uncertainty is quantified, because | know the probability of declaring a
“false positive".
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Note: Why is a P-value uniform?

O Let T be a test statistic whose distribution is Fy(¢) when the null hypothesis is true. Then the
corresponding P-value is
PO(T > 7fobs) =1- FO(tobs)a
and if the value of ¢, is a realisation of Typs (because the null hypothesis is true), then we can
write the random value of p,p,s seen in repetitions of the experiment as
Pobs =1- FO(Tobs),
or equivalently T, = Fgl(l — P,ps). Hence for x € [0, 1],
Po(Pobs <) = Po{l — Fo(Tons) <z}
= Po{l -2 < Fo(Tows)}
= Po {Tobs > F()_l(l - 1’)}
= 1-FR{F'1-2)}
= 1‘7
which shows that Pyps ~ U(0,1).

0 The above proof works for any continuous Typs, but is only approximate if Tops is discrete (e.g.,
has a Poisson distribution). In such cases P, can only take a finite or countable number of values
known as the achievable significance levels.
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Exact and inexact tests

O P ~U(0,1) under Hy, exactly in continuous cases and approximately in discrete cases.
[0 If the null distribution of the test statistic is estimated, we have P ~ U(0,1) only.
O  For example, if the true parameter is 6 = (19, A\g) and Hy : ¢ = 1)y, then the P-value is

Pobs = PO(T > ZL'obs) = P(T > ZL'obs; ¢07 )‘0)7

which we estimate by
Bobs = P(T" > tobs; 0, M),
where XO is the estimate of A under Hy,.
O Exact tests, with P ~ U(0, 1), can sometimes be obtained by using a pivot whose distribution is

invariant to A, or by removing A by conditioning or marginalisation.

Example 59 /f X;,.... X, Y N (u,0?), show that the distribution of T = (Y — p)/+/S%/n is

invariant to o2.

Example 60 Find an exact test on a canonical parameter in a logistic regression model.
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Note to Example 60

O here Y and S? are minimal sufficient and independent, with Y ~ A (u, 02 /n) and
(n—1)S?/0? ~ x2_,, and we can write Y’ D p+on"'?7 and S? = D o?V/(n — 1), where
Z ~ N(0,1) and V ~ x2_, are independent. Hence

Y — D p+oZ/n"V?2—p D Z
VP [02V/{n(n -1} V/IN-T)

is pivotal and thus allows tests on 1 without reference to o2.

[0 For a test on o2 without regard to 1, we use the marginal distribution of §2, as
V =(n—-1)8%/0? ~ x2_, is a pivot.
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Note to Example 59
O In a logistic regression model we have independent binary variables Y7,...,Y,, each with density
, 18 \Y 1 1—y; Vi) B
P(Y; =y;8) =7 (1—m)) 7% = ( > =—,
T ! ’ 145 P 14e%5 7 145 0P
for y; € {0,1}, known covariate vectors X; € R? and parameter 3 € R,
O The corresponding log likelihood is
n T " T
(B => {W}ﬁ —log (1 + e B)} =y"XB - log (1 + €% B) , BeR
j=1 j=1
This is a (d, d) exponential family with canonical statistic S = Xy, canonical parameter ¢ = f3,
and cumulant generator k(p) = > 7, log (1 + e:”JT“’).

00 Hence Lemma 40 implies that if ¢ = (¢, A) and S = (T, W) = (X{y, XJy), where X; isn x 1

and Xy is n x (d — 1), an exact test on 1) is obtained from the conditional distribution
P(T=t|W =u° i
= t = W ; = s
( ‘ w) Zy,es ) eX;Fy/w
where Sy, = {(¥}, ..., 1y,) : X5y = w°}, with w® = XJ4° and y° respectively the observed data
and the observed value of W.

O Calculation of this conditional density in applications may be awkward, but excellent

approximations are available.
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Comments

O If we say that a hypothesis is true, we mean ‘it is reasonable to proceed as if the hypothesis was
true’ — any model is an idealisation, so a hypothesis cannot be exactly ‘true’.

O If we have a discrete test statistic, pops has at most a countable number of ‘achievable
significance levels’. This is only problematic when comparing tests, though randomisation has
(unfortunately) sometimes been proposed to overcome it.

0 We may consider a two-sided test, with both unusually large and unusually small values of T of
interest. We can then define

b+ = PO(T > tObS)v - = PO(T < ZL'obs)7 Pobs = 2min(p_,p+),
so0 p— + py = 1+ Po(T = tobs), which equals 1 unless T is discrete;

0 We sometimes avoid minor problems due to discreteness by computing ‘continuity-corrected’
P-values

pr= 3 Po(T=1)+3Po(T =tans), p-= Y Po(T =1)+ 3Po(T = tobs).
t>tobs t<tobs

[0 So far we have described pure significance tests, where the situation if Hy is false is not
explicitly considered. We look at the effect of alternatives now.
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4.2 Neyman—Pearson Approach slide 135

Testing as decision-making

Neyman and Pearson formulated testing as deciding between two hypotheses:

O the null hypothesis Hy, which represents a baseline situation;

[0 the alternative hypothesis H, which represents what happens if Hy is false.
0 We choose H; and ‘reject’ Hy if pops is lower than some a € (0, 1).
O

For given a: we partition the sample space ) into

Yo={y €V :pows(y) >a}, Y1 ={y € :pos(y) <a},

where the notation pops(y) indicates that the P-value depends on the data, or equivalently

Vo={yed:tly) <tical, N1={yed tly)>ti_a}

where ¢, denotes the p quantile of the test statistic 7" = ¢(Y") under Hy.
O We call Y; the size « critical region of the test, and we reject Hy in favour of Hy if Y € Y4, or
equivalently if the test statistic exceeds the size « critical point ¢1_,.

O  Critical regions of different sizes for the same test should be nested, i.e., (in an obvious notation) if
o' > a, then
/
3710‘ - yfl and  t1_ o4 > ti_o.
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Link to confidence sets

0 In a test on a parameter 6, with hypothesis Hy : 8 = 6y and corresponding size « critical region
Vi(0p), we reject Hy at level av if

Pobs(y;to) <a =y & Vi(bo).

O A (1 — «) confidence set C;_,, for the ‘true value' of 6, i.e., the value that generated the data, is
the set of all values of 6y for which Hj is not rejected at significance level o, i.e.,

Cima =1{0 :pobs(y;0) > a} ={0:y € V1(0)}.

O This links hypothesis testing and confidence intervals, and enables construction of the latter in
general settings, by this process of test inversion.
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False positives and negatives

Decision
Accept Hy Reject Hy
State of Nature Hj true Correct choice (True negative)  Type | Error (False positive)
H, true  Type Il Error (False negative)  Correct choice (True positive)

0 We can make two sorts of wrong decision:
Type | error (false positive): Hy is true, but we wrongly reject it (and choose H;);
Type |l error (false negative): Hj is true, but we wrongly choose Hy.
[0 Statistics books and papers call
— the Type | error/false positive probability the size a = Po(Y € ));), and
— the true positive probability the power g = P1(Y € ).

O Note that losses due to wrong decisions are not taken into account.

Example 61 /fYy,...,Y, i N (i, 0?), with o% known, Hy : ju = pg and Hy : o = p1, find the Type
Il error as a function of the Type | error.
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Note to Example 60

[0 The minimal sufficient statistic for the normal model with both parameters unknown is (Y, 52),
and it is easy to check that if o2 is known the minimal sufficient statistic reduces to Y, which has
a N(po, 0% /n) distribution under Hy. Hence we take the test statistic 7' to be Y, and ) = R™.

O If w1 > po, then clearly we will take
Vo={y:7<tia}, V1={y: 72>t al;
this can be justified using the Neyman—Pearson lemma (below). Now

Po(Y € Vo) =Po(Y < ti_a) = Po{v/n(Y —p) /o < V/n(ti—a—po)/o} = @ {V/n(ti—a — po)/0}

because Z = \/n(Y — pg)/o ~ N(0,1) under Hy, and for this probability to equal 1 — o we must
take t1_o = po + on~Y2z,_,; this gives Type | error a.
O Although the form of ) is determined by H1, the value of t1_,, is given by calculations under Hj.
O Z=+n(Y —u)/o~N(0,1) under Hy, so the Type Il error is
Pi(Y €y = Pi(Y <ti_a)
= Py(Y <po+ont?2_,)
= PV —m)/o < V(o +on 20— m)/o}
= P(z1_q —9),
where § = n'/2(ju; — p1o)/o. Hence the Type Il error equals 1 — v when ju; = 19 and decreases as

a function of §. We would expect this, because as i increases, the distribution of Y under H;
shifts to the right and we are less likely to make a false negative error.
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True and false positives: Example

O It is traditional to fix « and choose T' (or equivalently };) to maximise 3, but usually more
informative to consider Po(7 > t) and P1(T > t) as functions of t.

O In Example 60 we would
— reject Hy incorrectly (false positive) with probability

at) = Po(T > t) = 1 = &{n"/?(t — o)/},
— reject Hy correctly ( ) with probability

B(t) =Py(T >t) =1—0{n"%(t — py)/o — 6}.

Ho False positive probability a(t)

|

True positive probability p(t)
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ROC curve

Definition 62 The receiver operating characteristic (ROC) curve of a test plots 3(t) against a(t)
as t varies, i.e., it shows the graph (z,y) = (Po(T > t),P1(T > t)), when t € R.

0 As p increases, it becomes easier to detect when Hj is false, because the densities under Hy and
Hy become more separated, and the ROC curve moves ‘further north-west’.

O When Hy and H; are the same then the curve lies on the diagonal, and the hypotheses cannot be
distinguished.
0 One summary measure of the overall quality of a test is the area under the curve,

1
AUC:/ B(a) dey,
0

which ranges between 0.5 for a useless test and 1.0 for a perfect test.
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Example
O In Example 60 a(t) = 1 — ®{n'/2(t — po)/o} and B(t) = 1 — ®{n'/2(t — pg)/o — 6}, so
equivalently we graph
B(t) =1—P(—21-4 — 0) = P(0 + 24) = B(«) against a € (0,1).
O Here is the ROC curve with © =2 (in red). Also shown are curves for © = 0,0.4,3,6. Which is
which?
0.70.‘0 0‘.2 0‘.4 0.6 0.8 1.‘0
False positive probability c(t)
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Neyman—Pearson lemma

Definition 63 A simple hypothesis entirely fixes the distribution of the data Y, whereas a
composite hypothesis does not fix the distribution of Y.

Definition 64 The critical region of a hypothesis test is the subset )); of the sample space ) for
which' Y € Y, implies that the null hypothesis is rejected.

We aim to choose ), to maximise the power of the test for a given size, i.e., such that P;(Y € )4) is
as large as possible provided Po(Y € 1) < a (with equality in continuous problems).

Lemma 65 (Neyman—Pearson) Let fo(y), fi(y) be the densities of Y under simple null and
alternative hypotheses. Then if it exists, the set

Vi={yelV: ily)/foly) >t}

such that Po(Y € Y1) = a maximises P1(Y € Y1) amongst all )| for which Po(Y € V) < a. Thus
the test of size o with maximal power rejects Hy when'Y € ).

Example 66 Construct an optimal test for testing Hy : v = g against Hy : ¢ = @1 based on a
random sample from a canonical exponential family.
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Note to Lemma 64

Suppose that a region ) such that Po(Y € )) = « exists and let V| be any other critical region of
size cv or less. Note that Yy U Y = YUY = V. If we write F(C) = fc f(y) dy for any density f
with corresponding distribution F, then we aim to show that F; () > F();). Now

f)dy— | fly)dy = F(Qn) — F(¥y) (5)
V1 Vi

equals
FANY) +FnYy) — FL ) = FQINYe) = F(V N Yg) = F(V1 N ). (6)
If F' = Fy, then (?7) is non-negative, because o = Fy()h) > Fo(Yy), so (?7) is also non-negative,

giving
tFo (V1 N Yg) > tFy(Vy N o), ¢ > 0.

But fi(y) > tfo(y) for y € Y1, and tfo(y) > fi(y) for y € o, so
Fi(VnYy) > tFo(V1i N Yy) > tEy (Vi N Yo) > Fi(Y) N o).

On adding Fy (Y1 N)Y;) to both sides we see that Fy()) > F()), as required.
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Note to Example 65
O The likelihood ratio is

) ~ el ~ P~ k) ko)

say, where s* = 3", 5(y;), so

Vi={y: i)/ foly) >t} ={y: (1 — wo)s™ + nk(po) — nk(p1) > logt},

and if 1 > o then

Vi ={y:s" > [logt+nk(e1) —nk(eo)]/ (w1 — vo)}-

This gives the form of )y and we should choose ¢ so that Po(Y € V1) = «, or equivalently s, so
that (in the continuous case)

Po(S* > s4) = /OO f(s;¢0)ds = a

Example 60 gave such a calculation for normal data with ¢1 = u1/0? > g = po/o? and known

o2

O If g1 < g, then division by 1 — g < 0 leads to

Vi ={y:s" <[logt+nk(p1) —nk(po)l/(p1 — o)}

0 The Neyman—Pearson lemma tell us that )); gives a most powerful test, but as it does not depend
on the value of ¢, this test is uniformly most powerful for all ¢ > ¢y, and likewise )5 is
uniformly most powerful for 1 < .
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Power

0 The NP lemma applies to simple hypotheses, but sometimes (e.g., Example 65) gives uniformly
most powerful (UMP) tests against composite alternatives, i.e., a single critical region ) is
most powerful against § = 6, for all 6; > 6, or for all 8; < 6.

O If there is no UMP region, we might compare tests of Hy : 6 = 6y against Hy : § = 6, by
— comparing them at some (arbitrary) ‘typical’ alternative;
— averaging power over some suitable set of alternatives; or
— looking at local alternatives, i.e., when 61 = 6y + § for small 6.

0 For local alternatives, note that with scalar 8 and mild regularity of the log likelihood,

f(y; 60 +9) d¢(6o)

1 =25 =00y +0) —£(6y) =0 5) = 6ly(0 0).

og { LSOO — 0 +) — 1(00) = 355 +o0) = 340 (40) + o)

[0 Hence the locally most powerful critical region for § > 0 is obtained from large values of the
score statistic, and conversely for § < 0.

O When 6 = (1), A) and we test the composite hypothesis Hy : 1) = vy against Hy : ¢ > 1o, without
constraints on A, the optimal local test for each A will be based on the score £,,(6) = 0¢(v, X) /0
evaluated at (100, A), which unless A can somehow be eliminated is often replaced in practice by

(¢07 )‘wo)-
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Aside: Score testing

[0 Score tests can be useful when maximising a full likelihood is difficult or not worthwhile.

0 Suppose we want to test Hy : 6 = 6 for scalar 8. Under Hy and classical asymptotics,

lo(00) ~ N(0,2(60)} = Lg(bo)/\/1(60) ~ N(0,1),

which gives a basis for the test.
00 When 0 = (1, \) and Hy : ¢ = 1), then

Lp(o) ~ N (0,2 (B0) ™"} = £4(00)"1*" (00) Ly (00) ~ XZim v
where §0 = (Q,Z)O,Xwo) and
PP0) 7 =14y (0) — 1a (0)an (0) M ory(6).

If 1) is scalar, then £,(60){1*¥ (60)}1/2 ~ N(0,1).
OO In both cases
— any maximisation is needed only on Hy, and

— if the expected information is difficult to compute, it can be replaced by the corresponding
observed information (if this is positive).
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Discussion: Interpretation of P-values
[0 Be careful about interpretation:
—  Dobs IS @ one-number summary of whether data are consistent with Hy;
— it is NOT the probability that Hy is true;
— even a tiny pops can support Hy better than an alternative H; (consider to,s = 3 when
T ~ N(p, 1) with pup =0, puy = 10);
— the power depends on analogues of § = n'/2(ju; — o) /o, where n is the sample size, 1 — po
is the effect size, and o is the precision, so
> even a tiny (practically irrelevant) effect size can be detected with very large n;
> conversely a practically important effect might be undetectable if n is small;
> i.e., ‘statistical significance’ # 'subject-matter importance'!

O A confidence interval, or estimate and its standard error, is often more informative.

0 Hypothesis testing is often applied by rote — in some medical journals no statement is complete
without an accompanying ‘(P < 0.05)" — and is sometimes regarded as controversial, with certain
journals now refusing to publish tests and P-values.

O The ‘replication crisis’ is partly due to abuse of hypothesis testing, e.g., by not correcting for
multiple tests, by formulating hypotheses in light of the data, ...
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0

0

Discussion: Contexts of testing

Example 67 The generalized Pareto distribution, with survival function

simplifies if £ = 0, and has finite upper support point x4 = —o /§ when £ < 0 but x4 = oo when
€ > 0. Here Hy : £ = 0 is both a simplifying and a dividing hypothesis, of interest (for example) when
the distribution is fitted to data on supercentenarians (finite or infinite limit to human life?).

It is unwise to be too categorical about testing, because of its different uses:

— testing a clear hypothesis of scientific interest (e.g., top quark);

— goodness of fit of a model (e.g., industrial fraud);

— decision-making with a clearly-specified alternative (e.g., covid testing);

— model simplification if null hypothesis true (e.g., score test for gamma shape);

— ‘dividing hypothesis' used to partition the parameter space into subsets with sharply different
interpretations;

— as a technical device for generating confidence intervals;
— to flag which of many similar null hypotheses might be false.

Hence arguing that testing should be abolished is unreasonable (as well as unrealistic).

(1+&x/o); S, €40,

P >2) = {exp<—m/a>, -0,
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4.3 Multiple Testing slide 147

Motivation

[0 Often require tests of several, even very many, hypotheses:

comparison of responses for several treatment groups with the same control group;
checking for a change in a series of observations;

screening genomic data for effects of many genes on a response.
O There are null hypotheses Hy, ..., H,,, of which

— my are true, indexed by an unknown set Z,
- mp =m — my are false, and

— the global null hypothesisis Hy= HiN---N H,,

0 We apply some testing procedure and declare R hypotheses to be significant, of which FP are
false positives and TP are true positives. Only R and m are known.
Non-significant ~ Significant
True nulls TN FP mo
False nulls FN TP m — my
R m
O In the cartoon on the next slide we have m = 20 hypotheses individually tested with o = 0.05. We
observe R =1, but E(FP) = ma = 1, so this is not a surprise.
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The perils of multiple testing
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Graphical approach

[0 Graphs can be helpful in suggesting which hypotheses are most suspect, and can highlight the
corresponding (i.e., smallest) P-values.

O P~U(0,1) implies Z = —logy P ~ exp(A) with A = In 10.

0O With this transformation small P; become large Z;; note that Z; > a iff P; < 107¢.

OO0 If Hy is true and the tests are independent, then Z1,...,Z,, id exp(A) and the Rényi
representation

D " E; iid
D1 J _ iid
Z(T) =\ ;m, T—l,...,m, El,...,Em exp(l),
applies to their order statistics. Then
— a plot of the ordered empirical Z; against their expectations should be straight;
— outliers, very large Z; (i.e., very small P;), cast doubt on the corresponding H;.
— For very small P; (i.e., large Z;) the uniformity may fail even under Hy, because the null
distributions give poor tail approximations; then some form of model-fitting may be needed.
— Similar ideas apply to z statistics (e.g., in regression): use a normal QQ-plot (excluding the
intercept etc.) as a basis for discussion of significant effects.
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GWAS, |

O A genome-wide association study (GWAS) tests the association between SNPs (‘single
nucleotide polymorphisms’) and a phenotype such as the expression of a protein. The null
hypotheses are

Hy,j : no association between the expression of the protein and SNP;, j=1,...,m.

O In a simple model we construct statistics Y; such that Y; ~ A (;,1), where 6; = 0 under H j,
and we take T); = |Y}|, which is likely to be far from zero if ; > 0 orf; < 0.

O If tons,; denotes the observed value of T, then the P-value for association j is

Pobs,j = PO(TIJ > tobs,j) =1- PO(—tobs,j < Y} < 75obs,j) = 2(1)(—tobs,j)a

where the approximation comes from the fact that Y; ~ A(0,1) under Hy ;.

[0 Here it is reasonable to expect that the effects are sparse, i.e., most of the §; = 0, and we seek a
needle in a haystack.

OO With many tests it is essential to ensure that the true positives are not drowned in the mass of
false positives.
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GWAS, II

O Left: a histogram of the P-values for tests of the association between m = 275297 SNPs and the
expression of the protein CFAB.

(0 The P-values for SNPs not associated with CFAB are uniformly distributed. Is there an excess of
small P-values?

00 Right: exponential Q-Q plot of the Z; = —log P;. What do you make of it?
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Control

O With several tests Type | error generalises to the familywise error rate (FWER), i.e., the
probability of at least one false positive when the individual hypotheses are tested,

FWER = P(FP > 1) =1 — P(accept all H;,j € 1),

and we aim to control this by ensuring that FWER < a.
O Control of the error rate:
— weak control guarantees FWER < « only under Hy, i.e., mg = m;

— strong control guarantees FWER < « for any configuration of null and alternative
hypotheses.

O If all the tests are independent with individual levels all equal to «, then
FWER=1-PFP=0)=1—-(1—-)™ =1, my— oo.
0 If conversely we fix FWER and the tests are independent we need
a=1-(1—FWER)Y™o,

so with mg = 20 and FWER = 0.05 we need o = 0.0026 — the power for individual tests will be
tiny (recall ROC curves).
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Bonferroni methods

O If P; is the P-value for the jth test and we reject H; if P; < o, then Boole's inequality (the
first Bonferroni inequality, aka the union bound) gives

mo mo mo
FWER=PFP>1)=P [ [ J{Pj<a;} | <) P(Pj<aj)=> aj
j=1 j=1 j=1

so even if the tests are dependent we have strong control of FWER if 377", a; < a.

O Usually we set o = a/m, so } 0 aj = moa/m < a.

O The resulting Bonferroni procedure lacks power when m is large (because a/m is very small),
but its assumptions are very weak.

O An improvement is the Holm—Bonferroni procedure: for given «,
— order the P-values as F;) < --- < F,;;) and the hypotheses as H y), ..., H,,, then
- reject H(1)7 o 7H(S—1)v where

. (6]
S:mln{SZP(s)>m}.

This still gives strong control but is more powerful than the basic Bonferroni procedure, because it
uses higher rejection thresholds. Hence the basic procedure should not be used.
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Note: Holm—Bonferroni procedure (HB)

O Recall that there are m hypotheses, of which mg are true nulls (for which j € 7) and
my1 = m — my are false nulls.

O If we apply HB and FP > 1, we must have wrongly rejected some Hj; with j € Z. If H(,) is the
first such hypothesis to be rejected in the sequential procedure, then the s — 1 hypotheses rejected
before it must have been false null hypotheses, so s — 1 < m; =m —mg, i.e., mg<m+1—s.

O As H,) was rejected, the corresponding P-value satisfies

o o

(s)_m+1—3_m0

Thus if FP > 1 then the P-value for at least one of the true null hypotheses satisfies P; < a/my,
and Boole's inequality gives

mo
FWER =P(FP > 1) <P [ | J{P; < a/mo} | <D P (P < a/mo) = moa/mo = a.
JET 7=1

0 The only assumption needed above was that the null P-values are U(0, 1) (used in Boole's
inequality), so HB strongly controls the FWER.
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False discovery rate

OO When m is large and the goal is exploratory, Bonferroni procedures are unreasonably stringent, and
it seems preferable to try and control the false discovery proportion

I(R > 0)FP/R,

where R is the number of rejected null hypotheses. The aim is to bound the proportion of false
positives among the rejections.

O Control of I(R > 0)FP/R is impossible because the set of true null hypotheses Z is unknown, so
instead we try and control the false discovery rate (FDR)

FDR = E{I(R > 0)FP/R}.

0 The Benjamini-Hochberg procedure gives strong control for independent tests: specify «, then
— order the P-values as F(;) < --- < P,y and the hypotheses as H ), ..., H(y,,
- reject Hyyy, ..., Hgy, where
R:max{r:P(r) < %}
This guarantees that FDR < a, but does not bound the actual proportion of false positives, just
its expectation. Often « = 0.1, 0.2, ....
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Note: Derivation of the Benjamini—Hochberg procedure
O Let the P-values for the false null hypotheses be Pj,..., P, , say, independent of the true null
iid

P-values Pi,..., Py, ~ U(0,1). Then the number of rejected hypotheses R satisfies
{R=r}n{P <ra/m}={P <ra/m}n{Ry=r—1},

where {R_1 = r — 1} is the event that there are exactly » — 1 rejections among Hs, ..., H,,. The
false discovery proportion is

3 FPI(R =) =3 I(R=r) N 1Py < ra/m),

r -
r=1 r=1 7=1

and by symmetry of the P; this has the same expectation as

m m

I(R=r) I(R.y=7r—-1)
< — < .
moz . (P <ra/m) moz . I(P <ra/m)
r=1 r=1
Thus the false discovery rate is
m
1
FDR = -P(R.1=r—1,P <
7n0;§;7n ( 1 r 41 _.Ta/”ﬁ
m
= my Z -P(R.y=r—1| P <ra/m)P(P, <ra/m)
r=1
1 ro
= my —P(R_l =T — 1)—
r m
r=1
maa m—1
= 22N PRy =)
m r=0
— w S .
m

The main steps above successively use the definition of conditional probability, the facts that P
and R_; are independent and P, ~ U(0, 1), and the fact that R_; € {0,1,...,m — 1}.

O Hence (under the conditions above) the Benjamini-Hochberg procedure strongly controls the FDR.
O Note that
— if mg < m, then the last inequality may be very unequal, so possibly FDR < «.

— if the P-values are dependent in such a way that
PRoy=r—1|P <ra/m)<PR_1=r—-1),

then the result also holds.
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GWAS, II
O Left: histogram of Q; = 10P; (when P; < 0.1) for tests of the association between m = 27530
SNPs and the expression of the protein CFAB, and the U(0, 1) density (red).

00 Right: exponential Q-Q plot of Z; = —log;, Q;, with Bonferroni cutoff (blue) and
Benjamini-Hochberg cutoffs (red), both with o = 0.05. The grey lines are the target and

pointwise 95% confidence sets for the order statistics.
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Comments
[J The Holm-Bonferroni procedure (HB) compares F(y), Pg),... to a/m,a/(m —1),..., whereas

the ordinary Bonferroni procedure (B) compares all the P; to o/m.
The Simes procedure (exercises) has exact FWER « for independent tests and then is preferable

O

to the Holm—Bonferroni procedure.
0 The Benjamini-Hochberg procedure (BH) strongly controls the false discovery rate, comparing the

ordered P-values to a/m,2ac/m, ..., .
0 HB and B also give strong control when the P-values are dependent. So does BH, taking

jo
Py <
() = me(m)’

with ¢(m) = 1 when the tests are independent or positively dependent, and c(m) =37, 1/j
under arbitrary dependence.

0 Many variants exist, but these versions are simple and widely used.

O Other classical procedures for multiple testing in regression settings are named after
— Tukey — bounds the maximum of ¢ statistics for different tests;

— Scheffé — simultaneously bounds all possible linear combinations of estimates 3;

Dunnett — compares different treatments with the same control.
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