
4 Hypothesis Testing slide 126

4.1 Pure Significance Tests slide 127

Discovery of the top quark (Abe et al., 1995, PRL)

Here are two extracts from the article announcing the discovery:
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Performing a test

! There’s a null hypothesis to be tested:

H0: the top quark does not exist.

This seems counter-intuitive, but as one cannot prove a hypothesis, we attempt to refute its
opposite — ‘proof by (stochastic) contradiction’.

! We obtain data, yobs = 27 events on the 3-jet, 4-jet, . . . channels.

! We compare yobs with its distribution P0 supposing that H0 is true.

! Here P0 is Poiss(λ0 = 6.7) and represents the baseline noise under H0.

! We compute the P-value

pobs = P0(Y ≥ yobs) =
∞∑

y=yobs

λy0
y!

e−λ0 = 3× 10−9,

so

– either H0 is true but a (very) rare event has occurred,

– or H0 is false and the top quark exists.

! Abe et al. announced a discovery, but if they had found pobs ≈ 0.001, maybe they would have
decided that H0 could not (yet) be rejected, and not published their work.
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Industrial fraud?

! n = 92 weighings of sacks on the ‘delivery’ (or not?) of a commodity:

261 289 291 265 281 291 285 283 280 261 263 281 291 289 280

292 291 282 280 281 291 282 280 286 291 283 282 291 293 291

300 302 285 281 289 281 282 261 282 291 291 282 280 261 283

291 281 246 249 252 253 241 281 282 280 261 265 281 283 280

242 260 281 261 281 282 280 241 249 251 281 273 281 261 281

282 260 281 282 241 245 253 260 261 281 280 261 265 281 241

260 241

! Their last digits are

0 1 2 3 4 5 6 7 8 9

14 42 14 9 0 6 2 0 0 5

! How can we tell if fraud has taken place?
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]

Pearson’s statistic

Definition 58 If O1, . . . , OK are the numbers of observations from a random sample of size n falling
in categories 1, . . . ,K, where E(Ok) = Ek > 0 for k = 1, . . . ,K and

∑K
k=1Ek = n, then Pearson’s

statistic (aka the ‘χ2 statistic’) is

T =
K∑

k=1

(Ok − Ek)2

Ek
.

! If
(O1, . . . , OK) ∼ Mult{n, (p1 = E1/n, . . . , pK = EK/n)},

then T
·∼ χ2

K−1 (approximation OK if average Ek ≥ 5), giving a test of whether data O1, . . . , OK

agree with specified probabilities p1, . . . , pK .

! Here Benford’s law suggests all pk
.
= 1/10, so take Ek = 92/10 = 9.2.

! For the original dataset we found tobs = 158.2 and hence

pobs = P0(T > tobs)
.
= P(χ2

9 ≥ 158.2)
.
= 0,

which is essentially impossible for uniformly distributed digits.

! Massive evidence for non-uniformity (and for industrial fraud?)
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Elements of a test

! A null hypothesis H0 to be tested.

! A test statistic T , large values of which will suggest that H0 is false, and with observed value tobs.

! A P-value
pobs = P0(T ≥ tobs),

where the null distribution P0(·) denotes a probability computed under H0.

! The smaller pobs is, the more we doubt that H0 is true.

! pobs is a realisation of a P-variable P , which is U(0, 1) under H0 (if T is continuous), so

P0(P ≤ pobs) = pobs.;

T is chosen so that P is more likely to be small if H0 is false.

! If I decide that H0 is false, when in fact it is true, then I make an error whose probability under H0

is exactly pobs — so my uncertainty is quantified, because I know the probability of declaring a
“false positive”.
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Note: Why is a P-value uniform?

! Let T be a test statistic whose distribution is F0(t) when the null hypothesis is true. Then the
corresponding P-value is

P0(T ≥ tobs) = 1− F0(tobs),

and if the value of tobs is a realisation of Tobs (because the null hypothesis is true), then we can
write the random value of pobs seen in repetitions of the experiment as

Pobs = 1− F0(Tobs),

or equivalently Tobs = F−1
0 (1− Pobs). Hence for x ∈ [0, 1],

P0(Pobs ≤ x) = P0 {1− F0(Tobs) ≤ x}
= P0 {1− x ≤ F0(Tobs)}
= P0

{
Tobs ≥ F−1

0 (1− x)
}

= 1− F0
{
F−1
0 (1− x)

}

= x,

which shows that Pobs ∼ U(0, 1).

! The above proof works for any continuous Tobs, but is only approximate if Tobs is discrete (e.g.,
has a Poisson distribution). In such cases Pobs can only take a finite or countable number of values
known as the achievable significance levels.
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Exact and inexact tests

! P ∼ U(0, 1) under H0, exactly in continuous cases and approximately in discrete cases.

! If the null distribution of the test statistic is estimated, we have P
·∼ U(0, 1) only.

! For example, if the true parameter is θ = (ψ0,λ0) and H0 : ψ = ψ0, then the P-value is

pobs = P0(T ≥ tobs) = P(T ≥ tobs;ψ0,λ0),

which we estimate by
p̂obs = P(T ≥ tobs;ψ0, λ̂0),

where λ̂0 is the estimate of λ under H0.

! Exact tests, with P ∼ U(0, 1), can sometimes be obtained by using a pivot whose distribution is
invariant to λ, or by removing λ by conditioning or marginalisation.

Example 59 If X1, . . . ,Xn
iid∼ N (µ,σ2), show that the distribution of T = (Y − µ)/

√
S2/n is

invariant to σ2.

Example 60 Find an exact test on a canonical parameter in a logistic regression model.
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Note to Example 60

! here Y and S2 are minimal sufficient and independent, with Y ∼ N (µ,σ2/n) and

(n− 1)S2/σ2 ∼ χ2
n−1, and we can write Y

D
= µ+ σn−1/2Z and S2 =

D
= σ2V/(n − 1), where

Z ∼ N (0, 1) and V ∼ χ2
n−1 are independent. Hence

T =
Y − µ√
S2/n

D
=

µ+ σZ/n−1/2 − µ

[σ2V/{n(n − 1)}]1/2
D
=

Z√
V/(N − 1)

∼ tn−1,

is pivotal and thus allows tests on µ without reference to σ2.

! For a test on σ2 without regard to µ, we use the marginal distribution of §2, as
V = (n− 1)S2/σ2 ∼ χ2

n−1 is a pivot.
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Note to Example 59

! In a logistic regression model we have independent binary variables Y1, . . . , Yn each with density

P(Yj = yj;β) = π
yj
j (1− πj)

1−yj =

(
ex

T
j β

1 + ex
T
j β

)yj (
1

1 + ex
T
j β

)1−yj

=
eyjx

T
j β

1 + ex
T
j β

,

for yj ∈ {0, 1}, known covariate vectors Xj ∈ Rd and parameter β ∈ Rd.

! The corresponding log likelihood is

ℓ(β) =
n∑

j=1

{
yjx

T
j β − log

(
1 + ex

T
j β
)}

= yTXβ −
n∑

j=1

log
(
1 + ex

T
j β
)
, β ∈ R

d.

This is a (d, d) exponential family with canonical statistic S = XTy, canonical parameter ϕ = β,

and cumulant generator k(ϕ) =
∑n

j=1 log
(
1 + ex

T
j ϕ
)
.

! Hence Lemma 40 implies that if ϕ = (ψ,λ) and S = (T,W ) = (XT
1 y,X

T
2 y), where X1 is n× 1

and X2 is n× (d− 1), an exact test on ψ is obtained from the conditional distribution

P(T = t | W = wo;ψ) =
etψ

∑
y′∈Swo e

XT
1 y′ψ

,

where Sw = {(y′1, . . . , y′n) : XT
2 y

′ = wo}, with wo = XT
2 y

o and yo respectively the observed data
and the observed value of W .

! Calculation of this conditional density in applications may be awkward, but excellent
approximations are available.
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Comments

! If we say that a hypothesis is true, we mean ‘it is reasonable to proceed as if the hypothesis was
true’ — any model is an idealisation, so a hypothesis cannot be exactly ‘true’.

! If we have a discrete test statistic, pobs has at most a countable number of ‘achievable
significance levels’. This is only problematic when comparing tests, though randomisation has
(unfortunately) sometimes been proposed to overcome it.

! We may consider a two-sided test, with both unusually large and unusually small values of T of
interest. We can then define

p+ = P0(T ≥ tobs), p− = P0(T ≤ tobs), pobs = 2min(p−, p+),

so p− + p+ = 1 + P0(T = tobs), which equals 1 unless T is discrete;

! We sometimes avoid minor problems due to discreteness by computing ‘continuity-corrected’
P-values

p+ =
∑

t>tobs

P0(T = t) + 1
2P0(T = tobs), p− =

∑

t<tobs

P0(T = t) + 1
2P0(T = tobs).

! So far we have described pure significance tests, where the situation if H0 is false is not
explicitly considered. We look at the effect of alternatives now.
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4.2 Neyman–Pearson Approach slide 135

Testing as decision-making

Neyman and Pearson formulated testing as deciding between two hypotheses:

! the null hypothesis H0, which represents a baseline situation;

! the alternative hypothesis H1, which represents what happens if H0 is false.

! We choose H1 and ‘reject’ H0 if pobs is lower than some α ∈ (0, 1).

! For given α we partition the sample space Y into

Y0 = {y ∈ Y : pobs(y) > α}, Y1 = {y ∈ Y : pobs(y) ≤ α},

where the notation pobs(y) indicates that the P-value depends on the data, or equivalently

Y0 = {y ∈ Y : t(y) < t1−α}, Y1 = {y ∈ Y : t(y) ≥ t1−α},

where tp denotes the p quantile of the test statistic T = t(Y ) under H0.

! We call Y1 the size α critical region of the test, and we reject H0 in favour of H1 if Y ∈ Y1, or
equivalently if the test statistic exceeds the size α critical point t1−α.

! Critical regions of different sizes for the same test should be nested, i.e., (in an obvious notation) if
α′ > α, then

Yα1 ⊂ Yα′

1 and t1−α > t1−α′ .
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Link to confidence sets

! In a test on a parameter θ, with hypothesis H0 : θ = θ0 and corresponding size α critical region
Y1(θ0), we reject H0 at level α if

pobs(y; θ0) < α ⇐⇒ y ∈ Y1(θ0).

! A (1− α) confidence set C1−α for the ‘true value’ of θ, i.e., the value that generated the data, is
the set of all values of θ0 for which H0 is not rejected at significance level α, i.e.,

C1−α = {θ : pobs(y; θ) ≥ α} = {θ : y ̸∈ Y1(θ)} .

! This links hypothesis testing and confidence intervals, and enables construction of the latter in
general settings, by this process of test inversion.
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False positives and negatives

Decision
Accept H0 Reject H0

State of Nature H0 true Correct choice (True negative) Type I Error (False positive)
H1 true Type II Error (False negative) Correct choice (True positive)

! We can make two sorts of wrong decision:

Type I error (false positive): H0 is true, but we wrongly reject it (and choose H1);

Type II error (false negative): H1 is true, but we wrongly choose H0.

! Statistics books and papers call

– the Type I error/false positive probability the size α = P0(Y ∈ Y1), and

– the true positive probability the power β = P1(Y ∈ Y1).

! Note that losses due to wrong decisions are not taken into account.

Example 61 If Y1, . . . , Yn
iid∼ N (µ,σ2), with σ2 known, H0 : µ = µ0 and H1 : µ = µ1, find the Type

II error as a function of the Type I error.
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Note to Example 60

! The minimal sufficient statistic for the normal model with both parameters unknown is (Y , S2),
and it is easy to check that if σ2 is known the minimal sufficient statistic reduces to Y , which has
a N (µ0,σ2/n) distribution under H0. Hence we take the test statistic T to be Y , and Y = Rn.

! If µ1 > µ0, then clearly we will take

Y0 = {y : y < t1−α}, Y1 = {y : y ≥ t1−α};

this can be justified using the Neyman–Pearson lemma (below). Now

P0(Y ∈ Y0) = P0(Y < t1−α) = P0{
√
n(Y −µ0)/σ <

√
n(t1−α−µ0)/σ} = Φ

{√
n(t1−α − µ0)/σ

}
,

because Z =
√
n(Y − µ0)/σ ∼ N (0, 1) under H0, and for this probability to equal 1− α we must

take t1−α = µ0 + σn−1/2z1−α; this gives Type I error α.

! Although the form of Y0 is determined by H1, the value of t1−α is given by calculations under H0.

! Z =
√
n(Y − µ1)/σ ∼ N (0, 1) under H1, so the Type II error is

P1(Y ∈ Y0) = P1(Y < t1−α)

= P1(Y < µ0 + σn−1/2z1−α)

= P1{
√
n(Y − µ1)/σ <

√
n(µ0 + σn−1/2z1−α − µ1)/σ}

= Φ(z1−α − δ),

where δ = n1/2(µ1 − µ0)/σ. Hence the Type II error equals 1− α when µ1 = µ0 and decreases as
a function of δ. We would expect this, because as µ1 increases, the distribution of Y under H1

shifts to the right and we are less likely to make a false negative error.
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True and false positives: Example

! It is traditional to fix α and choose T (or equivalently Y1) to maximise β, but usually more
informative to consider P0(T ≥ t) and P1(T ≥ t) as functions of t.

! In Example 60 we would

– reject H0 incorrectly (false positive) with probability

α(t) = P0(T ≥ t) = 1− Φ{n1/2(t− µ0)/σ},

– reject H0 correctly (true positive) with probability

β(t) = P1(T ≥ t) = 1−Φ{n1/2(t− µ0)/σ − δ}.

H0 False positive probability α(t)

H1

True positive probability β(t)

t

stat.epfl.ch Autumn 2024 – slide 139

ROC curve

Definition 62 The receiver operating characteristic (ROC) curve of a test plots β(t) against α(t)
as t varies, i.e., it shows the graph (x, y) = (P0(T ≥ t),P1(T > t)), when t ∈ R.

! As µ increases, it becomes easier to detect when H0 is false, because the densities under H0 and
H1 become more separated, and the ROC curve moves ‘further north-west’.

! When H0 and H1 are the same then the curve lies on the diagonal, and the hypotheses cannot be
distinguished.

! One summary measure of the overall quality of a test is the area under the curve,

AUC =

∫ 1

0
β(α) dα,

which ranges between 0.5 for a useless test and 1.0 for a perfect test.
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Example

! In Example 60 α(t) = 1− Φ{n1/2(t− µ0)/σ} and β(t) = 1− Φ{n1/2(t− µ0)/σ − δ}, so
equivalently we graph

β(t) = 1− Φ(−z1−α − δ) = Φ(δ + zα) ≡ β(α) against α ∈ (0, 1).

! Here is the ROC curve with µ = 2 (in red). Also shown are curves for µ = 0, 0.4, 3, 6. Which is
which?
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Neyman–Pearson lemma

Definition 63 A simple hypothesis entirely fixes the distribution of the data Y , whereas a
composite hypothesis does not fix the distribution of Y .

Definition 64 The critical region of a hypothesis test is the subset Y1 of the sample space Y for
which Y ∈ Y1 implies that the null hypothesis is rejected.

We aim to choose Y1 to maximise the power of the test for a given size, i.e., such that P1(Y ∈ Y1) is
as large as possible provided P0(Y ∈ Y1) ≤ α (with equality in continuous problems).

Lemma 65 (Neyman–Pearson) Let f0(y), f1(y) be the densities of Y under simple null and
alternative hypotheses. Then if it exists, the set

Y1 = {y ∈ Y : f1(y)/f0(y) > t}

such that P0(Y ∈ Y1) = α maximises P1(Y ∈ Y1) amongst all Y ′
1 for which P0(Y ∈ Y ′

1) ≤ α. Thus
the test of size α with maximal power rejects H0 when Y ∈ Y1.

Example 66 Construct an optimal test for testing H0 : ϕ = ϕ0 against H1 : ϕ = ϕ1 based on a
random sample from a canonical exponential family.
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Note to Lemma 64

Suppose that a region Y1 such that P0(Y ∈ Y1) = α exists and let Y ′
1 be any other critical region of

size α or less. Note that Y0 ∪ Y1 = Y ′
0 ∪ Y ′

1 = Y. If we write F (C) =
∫
C f(y) dy for any density f

with corresponding distribution F , then we aim to show that F1(Y1) ≥ F (Y ′
1). Now

∫

Y1

f(y) dy −
∫

Y ′

1

f(y) dy = F (Y1)− F (Y ′
1) (5)

equals

F (Y1 ∩ Y ′
1) + F (Y1 ∩ Y ′

0)− F (Y ′
1 ∩ Y1)− F (Y ′

1 ∩ Y0) = F (Y1 ∩ Y ′
0)− F (Y ′

1 ∩ Y0). (6)

If F = F0, then (??) is non-negative, because α = F0(Y1) ≥ F0(Y ′
1), so (??) is also non-negative,

giving
tF0(Y1 ∩ Y ′

0) ≥ tF0(Y ′
1 ∩ Y0), t ≥ 0.

But f1(y) > tf0(y) for y ∈ Y1, and tf0(y) ≥ f1(y) for y ∈ Y0, so

F1(Y1 ∩ Y ′
0) ≥ tF0(Y1 ∩ Y ′

0) ≥ tF0(Y ′
1 ∩ Y0) ≥ F1(Y ′

1 ∩ Y0).

On adding F1(Y1 ∩ Y ′
1) to both sides we see that F1(Y1) ≥ F (Y ′

1), as required.
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Note to Example 65

! The likelihood ratio is

f1(y)

f0(y)
=

m∗(y) exp{ϕ1s∗ − nk(ϕ1)}
m∗(y) exp{ϕ0s∗ − nk(ϕ0)}

= exp{(ϕ1 − ϕ0)s
∗ + nk(ϕ0)− nk(ϕ1)},

say, where s∗ =
∑n

j=1 s(yj), so

Y1 = {y : f1(y)/f0(y) > t} = {y : (ϕ1 − ϕ0)s
∗ + nk(ϕ0)− nk(ϕ1) > log t},

and if ϕ1 > ϕ0 then

Y1 = {y : s∗ > [log t+ nk(ϕ1)− nk(ϕ0)]/(ϕ1 − ϕ0)}.

This gives the form of Y1 and we should choose t so that P0(Y ∈ Y1) = α, or equivalently sα so
that (in the continuous case)

P0(S
∗ > sα) =

∫ ∞

sα

f(s;ϕ0) ds = α.

Example 60 gave such a calculation for normal data with ϕ1 = µ1/σ2 > ϕ0 = µ0/σ2 and known
σ2.

! If ϕ1 < ϕ0, then division by ϕ1 − ϕ0 < 0 leads to

Y∗
1 = {y : s∗ < [log t+ nk(ϕ1)− nk(ϕ0)]/(ϕ1 − ϕ0)}.

! The Neyman–Pearson lemma tell us that Y1 gives a most powerful test, but as it does not depend
on the value of ϕ, this test is uniformly most powerful for all ϕ > ϕ0, and likewise Y∗

1 is
uniformly most powerful for ϕ1 < ϕ0.
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Power

! The NP lemma applies to simple hypotheses, but sometimes (e.g., Example 65) gives uniformly
most powerful (UMP) tests against composite alternatives, i.e., a single critical region Y1 is
most powerful against θ = θ1 for all θ1 > θ0 or for all θ1 < θ0.

! If there is no UMP region, we might compare tests of H0 : θ = θ0 against H1 : θ = θ1 by

– comparing them at some (arbitrary) ‘typical’ alternative;

– averaging power over some suitable set of alternatives; or

– looking at local alternatives, i.e., when θ1 = θ0 + δ for small δ.

! For local alternatives, note that with scalar θ and mild regularity of the log likelihood,

log

{
f(y; θ0 + δ)

f(y; θ0)

}
= ℓ(θ0 + δ)− ℓ(θ0) = δ

dℓ(θ0)

dθ
+ o(δ) = δℓθ(θ0) + o(δ).

! Hence the locally most powerful critical region for δ > 0 is obtained from large values of the
score statistic, and conversely for δ < 0.

! When θ = (ψ,λ) and we test the composite hypothesis H0 : ψ = ψ0 against H0 : ψ > ψ0, without
constraints on λ, the optimal local test for each λ will be based on the score ℓψ(θ) = ∂ℓ(ψ,λ)/∂ψ
evaluated at (ψ0,λ), which unless λ can somehow be eliminated is often replaced in practice by
(ψ0, λ̂ψ0).
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Aside: Score testing

! Score tests can be useful when maximising a full likelihood is difficult or not worthwhile.

! Suppose we want to test H0 : θ = θ0 for scalar θ. Under H0 and classical asymptotics,

ℓθ(θ0)
·∼ N (0, ı(θ0)} =⇒ ℓθ(θ0)/

√
ı(θ0)

·∼ N (0, 1),

which gives a basis for the test.

! When θ = (ψ,λ) and H0 : ψ = ψ0, then

ℓψ(θ̂0)
·∼ N (0, ıψψ(θ̂0)

−1} =⇒ ℓψ(θ̂0)
Tıψψ(θ̂0)ℓψ(θ̂0)

·∼ χ2
dimψ,

where θ̂0 = (ψ0, λ̂ψ0) and

ıψψ(θ)−1 = ıψψ(θ)− ıψλ(θ)ıλλ(θ)
−1ıλψ(θ).

If ψ is scalar, then ℓψ(θ̂0){ıψψ(θ̂0)}1/2
·∼ N (0, 1).

! In both cases

– any maximisation is needed only on H0, and

– if the expected information is difficult to compute, it can be replaced by the corresponding
observed information (if this is positive).
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Discussion: Interpretation of P-values

! Be careful about interpretation:

– pobs is a one-number summary of whether data are consistent with H0;

– it is NOT the probability that H0 is true;

– even a tiny pobs can support H0 better than an alternative H1 (consider tobs = 3 when
T ∼ N (µ, 1) with µ0 = 0, µ1 = 10);

– the power depends on analogues of δ = n1/2(µ1 − µ0)/σ, where n is the sample size, µ1 − µ0

is the effect size, and σ is the precision, so

◃ even a tiny (practically irrelevant) effect size can be detected with very large n;

◃ conversely a practically important effect might be undetectable if n is small;

◃ i.e., ‘statistical significance’ ̸= ‘subject-matter importance’ !

! A confidence interval, or estimate and its standard error, is often more informative.

! Hypothesis testing is often applied by rote — in some medical journals no statement is complete
without an accompanying ‘(P < 0.05)’ — and is sometimes regarded as controversial, with certain
journals now refusing to publish tests and P-values.

! The ‘replication crisis’ is partly due to abuse of hypothesis testing, e.g., by not correcting for
multiple tests, by formulating hypotheses in light of the data, . . .
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Discussion: Contexts of testing

! It is unwise to be too categorical about testing, because of its different uses:

– testing a clear hypothesis of scientific interest (e.g., top quark);

– goodness of fit of a model (e.g., industrial fraud);

– decision-making with a clearly-specified alternative (e.g., covid testing);

– model simplification if null hypothesis true (e.g., score test for gamma shape);

– ‘dividing hypothesis’ used to partition the parameter space into subsets with sharply different
interpretations;

– as a technical device for generating confidence intervals;

– to flag which of many similar null hypotheses might be false.

! Hence arguing that testing should be abolished is unreasonable (as well as unrealistic).

Example 67 The generalized Pareto distribution, with survival function

P(X > x) =

{
(1 + ξx/σ)−1/ξ

+ , ξ ̸= 0,

exp(−x/σ), ξ = 0,

simplifies if ξ = 0, and has finite upper support point x+ = −σ/ξ when ξ < 0 but x+ = ∞ when
ξ ≥ 0. Here H0 : ξ = 0 is both a simplifying and a dividing hypothesis, of interest (for example) when
the distribution is fitted to data on supercentenarians (finite or infinite limit to human life?).

stat.epfl.ch Autumn 2024 – slide 146

98



4.3 Multiple Testing slide 147

Motivation

! Often require tests of several, even very many, hypotheses:

– comparison of responses for several treatment groups with the same control group;

– checking for a change in a series of observations;

– screening genomic data for effects of many genes on a response.

! There are null hypotheses H1, . . . ,Hm, of which

– m0 are true, indexed by an unknown set I ,

– m1 = m−m0 are false, and

– the global null hypothesis is H0 = H1 ∩ · · · ∩Hm.

! We apply some testing procedure and declare R hypotheses to be significant, of which FP are
false positives and TP are true positives. Only R and m are known.

Non-significant Significant
True nulls TN FP m0

False nulls FN TP m−m0

R m

! In the cartoon on the next slide we have m = 20 hypotheses individually tested with α = 0.05. We
observe R = 1, but E(FP) = mα = 1, so this is not a surprise.
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The perils of multiple testing
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Graphical approach

! Graphs can be helpful in suggesting which hypotheses are most suspect, and can highlight the
corresponding (i.e., smallest) P-values.

! P ∼ U(0, 1) implies Z = − log10 P ∼ exp(λ) with λ = ln 10.

! With this transformation small Pj become large Zj ; note that Zj > a iff Pj < 10−a.

! If H0 is true and the tests are independent, then Z1, . . . , Zm
iid∼ exp(λ) and the Rényi

representation

Z(r)
D
= λ−1

r∑

j=1

Ej

m+ 1− j
, r = 1, . . . ,m, E1, . . . , Em

iid∼ exp(1),

applies to their order statistics. Then

– a plot of the ordered empirical Zj against their expectations should be straight;

– outliers, very large Zj (i.e., very small Pj), cast doubt on the corresponding Hj.

– For very small Pj (i.e., large Zj) the uniformity may fail even under H0, because the null
distributions give poor tail approximations; then some form of model-fitting may be needed.

– Similar ideas apply to z statistics (e.g., in regression): use a normal QQ-plot (excluding the
intercept etc.) as a basis for discussion of significant effects.
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GWAS, I

! A genome-wide association study (GWAS) tests the association between SNPs (‘single
nucleotide polymorphisms’) and a phenotype such as the expression of a protein. The null
hypotheses are

H0,j : no association between the expression of the protein and SNPj, j = 1, . . . ,m.

! In a simple model we construct statistics Yj such that Yj
·∼ N (θj, 1), where θj = 0 under H0,j,

and we take Tj = |Yj|, which is likely to be far from zero if θj ≫ 0 orθj ≪ 0.

! If tobs,j denotes the observed value of Tj , then the P-value for association j is

pobs,j = P0(Tj > tobs,j) = 1− P0(−tobs,j ≤ Yj ≤ tobs,j)
.
= 2Φ(−tobs,j),

where the approximation comes from the fact that Yj
·∼ N (0, 1) under H0,j.

! Here it is reasonable to expect that the effects are sparse, i.e., most of the θj = 0, and we seek a
needle in a haystack.

! With many tests it is essential to ensure that the true positives are not drowned in the mass of
false positives.
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GWAS, II

! Left: a histogram of the P-values for tests of the association between m = 275297 SNPs and the
expression of the protein CFAB.

! The P-values for SNPs not associated with CFAB are uniformly distributed. Is there an excess of
small P-values?

! Right: exponential Q-Q plot of the Zj = − log Pj . What do you make of it?
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Control

! With several tests Type I error generalises to the familywise error rate (FWER), i.e., the
probability of at least one false positive when the individual hypotheses are tested,

FWER = P(FP ≥ 1) = 1− P(accept all Hj, j ∈ I),

and we aim to control this by ensuring that FWER ≤ α.

! Control of the error rate:

– weak control guarantees FWER ≤ α only under H0, i.e., m0 = m;

– strong control guarantees FWER ≤ α for any configuration of null and alternative
hypotheses.

! If all the tests are independent with individual levels all equal to α, then

FWER = 1− P(FP = 0) = 1− (1− α)m0 → 1, m0 → ∞.

! If conversely we fix FWER and the tests are independent we need

α = 1− (1− FWER)1/m0 ,

so with m0 = 20 and FWER = 0.05 we need α
.
= 0.0026 — the power for individual tests will be

tiny (recall ROC curves).

stat.epfl.ch Autumn 2024 – slide 153

101



Bonferroni methods

! If Pj is the P-value for the jth test and we reject Hj if Pj < αj , then Boole’s inequality (the
first Bonferroni inequality, aka the union bound) gives

FWER = P(FP ≥ 1) = P

⎛

⎝
m0⋃

j=1

{Pj ≤ αj}

⎞

⎠ ≤
m0∑

j=1

P (Pj ≤ αj) =
m0∑

j=1

αj,

so even if the tests are dependent we have strong control of FWER if
∑m

j=1 αj ≤ α.

! Usually we set αj ≡ α/m, so
∑m0

j=1 αj = m0α/m ≤ α.

! The resulting Bonferroni procedure lacks power when m is large (because α/m is very small),
but its assumptions are very weak.

! An improvement is the Holm–Bonferroni procedure: for given α,

– order the P-values as P(1) ≤ · · · ≤ P(m) and the hypotheses as H(1), . . . ,H(m), then

– reject H(1), . . . ,H(S−1), where

S = min

{
s : P(s) >

α

m+ 1− s

}
.

This still gives strong control but is more powerful than the basic Bonferroni procedure, because it
uses higher rejection thresholds. Hence the basic procedure should not be used.
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Note: Holm–Bonferroni procedure (HB)

! Recall that there are m hypotheses, of which m0 are true nulls (for which j ∈ I) and
m1 = m−m0 are false nulls.

! If we apply HB and FP ≥ 1, we must have wrongly rejected some Hj with j ∈ I . If H(s) is the
first such hypothesis to be rejected in the sequential procedure, then the s− 1 hypotheses rejected
before it must have been false null hypotheses, so s− 1 ≤ m1 = m−m0, i.e., m0 ≤ m+ 1− s.

! As H(s) was rejected, the corresponding P-value satisfies

P(s) ≤
α

m+ 1− s
≤ α

m0
.

Thus if FP ≥ 1 then the P-value for at least one of the true null hypotheses satisfies Pj ≤ α/m0,
and Boole’s inequality gives

FWER = P(FP ≥ 1) ≤ P

⎛

⎝
⋃

j∈I

{Pj ≤ α/m0}

⎞

⎠ ≤
m0∑

j=1

P (Pj ≤ α/m0) = m0α/m0 = α.

! The only assumption needed above was that the null P-values are U(0, 1) (used in Boole’s
inequality), so HB strongly controls the FWER.
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False discovery rate

! When m is large and the goal is exploratory, Bonferroni procedures are unreasonably stringent, and
it seems preferable to try and control the false discovery proportion

I(R > 0)FP/R,

where R is the number of rejected null hypotheses. The aim is to bound the proportion of false
positives among the rejections.

! Control of I(R > 0)FP/R is impossible because the set of true null hypotheses I is unknown, so
instead we try and control the false discovery rate (FDR)

FDR = E{I(R > 0)FP/R}.

! The Benjamini–Hochberg procedure gives strong control for independent tests: specify α, then

– order the P-values as P(1) ≤ · · · ≤ P(m) and the hypotheses as H(1), . . . ,H(m),

– reject H(1), . . . ,H(R), where

R = max
{
r : P(r) <

rα

m

}
.

This guarantees that FDR ≤ α, but does not bound the actual proportion of false positives, just
its expectation. Often α = 0.1, 0.2, . . . .
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Note: Derivation of the Benjamini–Hochberg procedure

! Let the P-values for the false null hypotheses be P ′
1, . . . , P

′
m1

, say, independent of the true null

P-values P1, . . . , Pm0

iid∼ U(0, 1). Then the number of rejected hypotheses R satisfies

{R = r} ∩ {P1 ≤ rα/m} = {P1 ≤ rα/m} ∩ {R−1 = r − 1},

where {R−1 = r − 1} is the event that there are exactly r − 1 rejections among H2, . . . ,Hm. The
false discovery proportion is

m∑

r=1

FP

r
I(R = r) =

m∑

r=1

I(R = r)

r

m0∑

j=1

I(Pj ≤ rα/m),

and by symmetry of the Pj this has the same expectation as

m0

m∑

r=1

I(R = r)

r
I(P1 ≤ rα/m) = m0

m∑

r=1

I(R−1 = r − 1)

r
I(P1 ≤ rα/m).

Thus the false discovery rate is

FDR = m0

m∑

r=1

1

r
P(R−1 = r − 1, P1 ≤ rα/m)

= m0

m∑

r=1

1

r
P(R−1 = r − 1 | P1 ≤ rα/m)P(P1 ≤ rα/m)

= m0

m∑

r=1

1

r
P(R−1 = r − 1)

rα

m

=
m0α

m

m−1∑

r=0

P(R−1 = r)

=
m0α

m
≤ α.

The main steps above successively use the definition of conditional probability, the facts that P1

and R−1 are independent and P1 ∼ U(0, 1), and the fact that R−1 ∈ {0, 1, . . . ,m− 1}.
! Hence (under the conditions above) the Benjamini–Hochberg procedure strongly controls the FDR.

! Note that

– if m0 ≪ m, then the last inequality may be very unequal, so possibly FDR ≪ α.

– if the P-values are dependent in such a way that

P(R−1 = r − 1 | P1 ≤ rα/m) ≤ P(R−1 = r − 1),

then the result also holds.
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GWAS, II

! Left: histogram of Qj = 10Pj (when Pj < 0.1) for tests of the association between m = 27530
SNPs and the expression of the protein CFAB, and the U(0, 1) density (red).

! Right: exponential Q-Q plot of Zj = − log10 Qj , with Bonferroni cutoff (blue) and
Benjamini–Hochberg cutoffs (red), both with α = 0.05. The grey lines are the target and
pointwise 95% confidence sets for the order statistics.
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Comments

! The Holm–Bonferroni procedure (HB) compares P(1), P(2), . . . to α/m,α/(m − 1), . . ., whereas
the ordinary Bonferroni procedure (B) compares all the Pj to α/m.

! The Simes procedure (exercises) has exact FWER α for independent tests and then is preferable
to the Holm–Bonferroni procedure.

! The Benjamini–Hochberg procedure (BH) strongly controls the false discovery rate, comparing the
ordered P-values to α/m, 2α/m, . . . ,α.

! HB and B also give strong control when the P-values are dependent. So does BH, taking

P(j) ≤
jα

mc(m)
,

with c(m) = 1 when the tests are independent or positively dependent, and c(m) =
∑m

j=1 1/j
under arbitrary dependence.

! Many variants exist, but these versions are simple and widely used.

! Other classical procedures for multiple testing in regression settings are named after

– Tukey — bounds the maximum of t statistics for different tests;

– Scheffé — simultaneously bounds all possible linear combinations of estimates β̂;

– Dunnett — compares different treatments with the same control.
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